Object compositing based on 2D images is a challenging problem since it typically involves multiple processing stages such as color harmonization, geometry correction and shadow generation to generate realistic results. Furthermore, annotating training data pairs for compositing requires substantial manual effort from professionals, and is hardly scalable. Thus, with the recent advances in generative models, in this work, we propose a self-supervised framework for object compositing by leveraging the power of conditional diffusion models. Our framework can hollistically address the object compositing task in a unified model, transforming the viewpoint, geometry, color and shadow of the generated object while requiring no manual labeling. To preserve the input object's characteristics, we introduce a content adaptor that helps to maintain categorical semantics and object appearance. A data augmentation method is further adopted to improve the fidelity of the generator. Our method outperforms relevant baselines in both realism and faithfulness of the synthesized result images in a user study on various real-world images.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
translated by 谷歌翻译
深度图用于从3D渲染到2D图像效应(例如散景)的广泛应用。但是,单个图像深度估计(侧)模型预测的人通常无法捕获对象中的孤立孔和/或具有不准确的边界区域。同时,使用商业自动掩蔽工具或现成的分割和垫子的方法,甚至是通过手动编辑,使用商业自动掩盖工具或现成的方法更容易获得。因此,在本文中,我们提出了一个新的掩盖引导深度细化的问题,该问题利用通用掩模来完善侧面模型的深度预测。我们的框架执行了分层的细化和介入/架设,将深度图分解为两个由掩码和倒置面罩表示的单独的层。由于具有深度和掩码注释的数据集很少,因此我们提出了一种使用任意掩码和RGB-D数据集的自我监督学习方案。我们从经验上表明,我们的方法对不同类型的掩模和初始深度预测具有鲁棒性,可以准确地完善内部和外掩模边界区域的深度值。我们通过消融研究进一步分析了我们的模型,并证明了实际应用的结果。可以在https://sooyekim.github.io/maskdepth/上找到更多信息。
translated by 谷歌翻译
除了像素功能之外,还利用“类级”信息(例如OCR和CPNET)等最新的分割方法,在提高现有网络模块的准确性方面取得了显着的成功。但是,提取的类级信息简单地与像素功能相连,而无需明确利用以获得更好的像素表示学习。此外,这些方法基于粗蒙版预测来学习软类中心,这很容易积累错误。在本文中,旨在更有效地使用班级信息,我们提出了一种普遍的班级感知正规化(CAR)方法,以优化特征学习过程中的阶层内差异和类间距离,这是由于人类可以识别的事实而激发的。对象本身不管它出现哪个其他对象。提出了三个新颖的损失功能。第一个损失函数鼓励每个类中更紧凑的类表示,第二个损失函数直接最大化了不同类中心之间的距离,第三个进一步推动了班级中心和像素之间的距离。此外,我们方法中的班级中心是由地面真理直接产生的,而不是从容易出错的粗糙预测中产生。我们的方法可以轻松地应用于包括OCR和CPNET在内的大多数现有分割模型,并且在没有额外的推理开销的情况下可以在很大程度上提高其准确性。在多个基准数据集上进行的广泛实验和消融研究表明,所提出的汽车可以提高所有基线模型的准确性,高达2.23%MIOU,具有出色的概括能力。完整的代码可在https://github.com/edwardyehuang/car上找到。
translated by 谷歌翻译
光流估计是自动驾驶和机器人系统系统中的一项基本任务,它可以在时间上解释流量场景。自动驾驶汽车显然受益于360 {\ deg}全景传感器提供的超宽视野(FOV)。但是,由于全景相机的独特成像过程,专为针孔图像设计的模型不会令人满意地概括为360 {\ deg}全景图像。在本文中,我们提出了一个新颖的网络框架 - panoflow,以学习全景图像的光流。为了克服全景转化中等应角投影引起的扭曲,我们设计了一种流动失真增强(FDA)方法,其中包含径向流量失真(FDA-R)或等骨流量失真(FDA-E)。我们进一步研究了全景视频的环状光流的定义和特性,并通过利用球形图像的环状来推断360 {\ deg}光流并将大型位移转换为相对小的位移,从而提出了环状流量估计(CFE)方法移位。 Panoflow适用于任何现有的流量估计方法,并从狭窄的FOL流量估计的进度中受益。此外,我们创建并释放基于CARLA的合成全景数据集Flow360,以促进训练和定量分析。 Panoflow在公共Omniflownet和已建立的Flow360基准中实现了最先进的表现。我们提出的方法将Flow360上的端点误差(EPE)降低了27.3%。在Omniflownet上,Panoflow获得了3.17像素的EPE,从最佳发布的结果中降低了55.5%的误差。我们还通过收集工具和公共现实世界中的全球数据集对我们的方法进行定性验证我们的方法,这表明对现实世界导航应用程序的强大潜力和稳健性。代码和数据集可在https://github.com/masterhow/panoflow上公开获取。
translated by 谷歌翻译
使用机器学习技术校准低成本传感器是现在广泛使用的方法。虽然在部署低成本传感器的空气质量监测的低成本传感器中仍有许多挑战,但低成本传感器已被证明与高精度仪器相结合。因此,大多数研究专注于使用机器学习应用不同的校准技术。然而,这些模型的成功应用取决于传感器获得的数据的质量,并且已经从传感器采样和数据预处理到传感器本身的校准,从传感器采集过程中支付了很少的关注。在本文中,我们展示了主要的传感器采样参数,它们对基于机器学习的传感器校准的质量的相应影响及其对能源消耗的影响,因此显示了现有的权衡。最后,实验节点上的结果显示了数据采样策略在对流层臭氧,二氧化氮和一氧化氮低成本传感器的校准中的影响。具体地,我们展示了如何最小化感测子系统的占空比的采样策略可以降低功耗,同时保持数据质量。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译